IB Metal Detector Project
Part 1

I am going to begin outlining an IB metal detector project. The purpose of this project is not to build a working detector that can be used in the field but to build a test bed that can be used to evaluate metal detector algorithms. 

The design is going to be constrained by the fact that I have an XLT, and I want to be able to compare my results to what I get from the XLT. I also want to use my XLT coils. So this will be a single frequency detector operating at approximately 6600 Hz. I want to implement both all metal and discriminate modes. 

The hardware design will be a PIC microcontroller board with these additional circuits: a driver for the transmit winding, a preamp for the received signal, a few switches for changing modes, a driver for earphones, and a serial interface to a PC. 

The output of the preamp will be sampled by an A/D. The signal will be demodulated by sampling at appropriate times to produce two channels of data (X and Y) 90 degrees apart. X and Y contain the phase information that is needed for discrimination. X and Y will be combined to produce a ground balanced signal G. All channels will be low pass filtered to reduce noise. 

For all metal mode the G signal will be sent through a high pass filter to provide a self adjusting threshold. Then the signal will be used to create an audio tone for the earphones. 

For discriminate mode the X, Y, and G signals will be filtered with identical high pass or band pass filters. The filtered G signal will be used to determine when to look at X and Y. The phase angle will be calculated from X and Y. The phase angle will be evaluated as being in an accepted or rejected range. Accepted and rejected signals cause a beep from the discriminator to begin or end. If a beep is not terminated by a rejected signal it will end automatically after a predetermined amount of time. 

Most of the work is in the filtering. Before I start buying hardware I want to convince myself that the amount of processing to be done is within the capabilities of the PIC controllers. So I will start estimating the memory requirement and instruction cycle requirements of the various filters in Part 2 of this project. 

Part 2

I want to estimate the processor resources required for this project. I first need to know how many data bits I need and what the iteration rates will be for various calculations. 

I will be using the White's BM950 coil as the baseline for this design. The coil is tuned for approximately 6600 Hz. Because it is tuned it does not need to be driven with a sign wave. It can be driven with rectangular current pulses at 6600 Hz. 

The input signal will have to be sampled on 90 degree intervals. So the basic interrupt rate will be 4 * 6600 or 26400 Hz. I do not think I will be able to sample at that rate and still have time to do everything else that needs to be done. So I will plan on sampling every 270 degrees. That still gives samples that are 90 degrees apart. Sampling points are: 0, 270, 540 (180), 810 (90), etc. So I read a sample every 3rd interrupt, or at 8800 Hz. But alternating samples are used for different signal channels. For example the even samples are used for the X channel and the odd sample are used for Y. So the sampling rate per channel is 4400 Hz. 

Now let's look at the number of bits needed. With a single bit of information the detector could decide whether a signal is present to not. But the signal we are looking at is AC. If we are going to do all the demodulation inside the processor we need a sign bit and at least one magnitude bit. That would be enough to detect an air target at a fixed distance from the coil. 

When the target is lying on the ground the coil will see a signal from the ground as well as from the target. In many cases the signal from the ground is stronger than the signal from a coin on the surface. With the 9.5 inch coil I have measured ground signals almost 10 times stronger than the coin signal. For this project I want to be able to handle a ground signal 8 times stronger than a surface coin. So we need a sign bit plus 3 magnitude bits just to detect the presence of a coin on the surface. 

But I don't just want to detect the target I also want to ID it by measuring the phase angle of the signal. With only one magnitude bit of target info I would only be able to classify the phase angle as being less than 45 or more than 45 degrees. I would like to divide the range of conductive targets (90 degree range) into at least 8 parts. That is going to require 3 bits of magnitude instead of 1. So we are up to a sign bit plus 5 bits of magnitude. 

Roughly speaking the signal strength falls off exponentially with distance from the coil. That's not accurate real close to the coil, but it approximately applies at normal detection distances of .2 to 1 times the coil diameter. For the BM950 the signal is reduced by a factor of 2 for each additional inch from the coil. If we want to detect a coin at 9 inches from the coil we need another 9 bits. That brings us up to a sign bit plus 14. 

So we need 15 bits without even considering other noise sources. I would like a couple of extra bits for safety, but I am determined to keep this down to 16 bits. (I think I could do a real nice job with an 18 bit A/D.) 

Now how do we get even 15 bits of information from a 10 or 12 bit A/D? There should not be much change in the target signal from one sample to the next. In fact the signal changes that we are interested in will occur over periods on the order of tenths of a second or hundreds of samples. So we can integrate many samples to get more accurate measurements at a lower rate. Keep in mind that we do not care about the absolute accuracy of our measurements we just want to be able to recognize small changes. 

Suppose we pick 1/60 of a second as the integration time. One important source of external noise is 60 Hz power sources, especially since I will be testing this indoors with lots of fluorescent lights. Integrating over a 60th of a second should cancel out most of the 60 Hz noise, except the unsymmetrical noise from some dimmer switches. In some countries 1/50 would be better. 1/60 th of 4400 is approximately 73 samples. this would give 6 extra bits of data, in fact it would not fit in 16 bits, so we will have to do a 24 bit accumulation. 

So the plan is to take 10 or 12 bit samples at a 4400 Hz sample rate and integrate them in a 24 bit accumulator. Then they are scaled down to 16 bits and other operations are performed at a 60 Hz rate. 

These are the iteration rates we have so far: 

26400 Hz - drive transmit coil, update software counters for lower rates. 

8800 Hz - read A/D, demodulate, 16 bit median filter, 24 bit accumulate. 

60 Hz - low pass filter x 2, create ground balanced channel, high pass filter x 3, evaluate phase, discriminate. 

I will try to add up some instruction cycle times in the next part, but I have taken a little peek at the numbers and it looks like I am already in trouble at the 26400 and 8800 rates. I don't think the 4 MHz chip is going to do it. 

Part 3

I am counting (or guessing) instruction cycles to get an estimate of the processing load and to figure out what processing device I can use. 

It looks like the interrupt overhead just to save and restore essential data is about 20 cycles per interrupt. 20 * 26,400 is 528,000 cycles per sec, which is more than half the throughput of the 4 MHz chips. I don't have to do any more math than this to see that the 4 MHz parts are not fast enough for a 26400 Hz interrupt rate in this project. So I will assume I am using a 20 MHz chip. 

By counting and guessing I get: 

20 cycles overhead

20 cycles maintaining counters and figuring out what to do on this interrupt

10 cycles controlling the transmit signal

subtotal: 50 cycles every interrupt 

In addition there is extra work every 3rd interrupt:

10 cycles read A/D and start next conversion

55 cycles median filter

10 cycles accumulate result

subtotal: 75 cycles every 3rd interrupt 

Total for interrupts: 50 * 26,400 + 75 * 8,800 = 1,980,000 or 40% of the throughput of the 20 MHz chip. Assume I forgot something and round this up to 50% of the chip's capacity for the fast loops. That leaves the other 50% for the 60 Hz loop. That is 2,500,000 / 60 = 41,666 cycles available per 60 Hz loop. I have not started adding up cycles in the slow loop but 41k is a number I feel comfortable working with. 

I can also see that if I can really get all the work done in the long (3rd) interrupt and have time to set up a few flags I can skip the 20 cycles of overhead on the short interrupts because I can test bits and set bits without altering W or the status flags, So as long as I can get things set up ahead of time my short interrupts can be shorter than I estimated above. That gives me a little safety margin. 

But in figuring this out I ran into a couple of problems. While looking at the number of bits required I decided that I wanted to use a 12 bit A/D not 10. Then when I went to look up the part number, I could not find any chip with flash memory and a 12 bit A/D. 

I also noticed when looking at the A/D timing that it has a 5 micro sec amplifier settling time. Since I am sampling a 6600 Hz sine wave, it is not going to stay still for 5 micro sec. That means that when I issue the command to open the sample and hold switch and start a conversion, the A/D amplifier is still going to be settling while it is converting the first couple of bits. That will produce bad data, but I cannot estimate how bad. I could not find any spec on what frequencies or slew rate this A/D can handle. If I have to add an external sample and hold it is going to kill some of the appeal of using this "all in one" chip. 

Part 4

I have looked at the PIC and Atmel AVR chip families. I only wrote sample code for the high speed loops, but I am fairly confident that the high end chips from either family have enough processing power for this project. 

My main worry now is that the on board analog components will not be good enough. I was not able to figure out from the specs what kind of quality to expect when reading a 6600 Hz signal. So the next step is to run some tests. That means deciding on which chip family to use. 

The choice came down to a trade off between chip architecture and availability of development boards. I found that I like the AVR architecture better. I think it will be easier for me to program in this project. On the other hand there are more PIC development boards to choose from. But I did find an AVR board that has enough prototyping space for the project. So I have ordered an AVR board that has an AT90S8535 with an internal 10 bit A/D. 

I will run some A/D tests before going to the trouble of building the preamp. I will use a PWM to drive the transmit coil and use the A/D to measure the voltage across the transmit coil. This will be a large voltage that I do not need a preamp for. I will be able to find out how much noise the A/D sees and how many useable bits of data I can get. 

Part 5

I got an ABC Maxi Board made by Investment Technologies with an 8 MHz AT90S8535. Since it comes with a Basic compiler I thought it would be easier to run the A/D tests in Basic. I set up a 6600 Hz software delay loop (no interrupts) to drive a coil and read the A/D. 

First I used a voltage divider to bias the A/D in the center of its range and took many of samples of the DC voltage. There is no more than one LSB of noise. Then I drove the coil with a 6600 Hz pulse with enough current to develop a 1 volt peak to peak signal across the coil. I adjusted the sampling point to the steepest part of the waveform. I also tried a 2.5 volt peak to peak signal. In all cases the noise is no more than one LSB. So it looks like this A/D is going to be ok for directly reading a 6600 Hz signal. 

But I did run into some problems before I started getting good results. On my first try at reading the AC signal I was getting about 5 bits of noise on the 10 bit sample. The main problem turned out to be that the Basic compiler sets up one or more timer interrupts for a real time clock and a timer function. Those interrupts were causing a couple of microseconds of jitter in my software timing loop. So I was seeing almost a hundred millivolts of noise because the sampling time was not consistent. I had to disable the Basic timer interrupts while I was making measurements. 

While I was tracking down that problem I also noticed that the A/D does not start when you tell it to. It does not start until the next tick of the A/D clock. If you use a 4 microsecond A/D clock then there can be a delay of from 0 to 4 micro sec before the A/D actually starts. This means that my high speed interrupt will have to be synchronized with the A/D clock, which means that the interrupt period will have to be a multiple of 4 microseconds. That means that the period of the transmit signal will have to be a multiple of 16 microseconds, because there are 4 interrupts per cycle.

Unfortunately there are no multiples of 16 micro sec that give 6600 Hz. I have not decided what to do about that yet. 

But the good news is that the on board A/D seems to do a good job of reading a rapidly changing signal (tested at about 30,000 volts/sec). 

Part 6

Setting up an interrupt routine to drive the coil and sample the A/D was a little more difficult than I had anticipated. I originally talked about a 26400 Hz interrupt rate to drive the coil and sampling the A/D on every third interrupt. That was a worst case scenario, I was expecting to be able to do better. One reason for choosing the chip I did was because it has 3 timers, 2 of which can be used as PWM's. I thought that I could use one PWM for audio, the other PWM to drive the coil and the timer for the A/D. This way I might get by with 8800 or at worst 8800 + 6600 interrupts per sec instead of 26400. But I ran into problems. 

For one thing the PWM's did not work the way I expected. You cannot set them to any arbitrary period. The period is only adjusted by powers of 2, and you cannot get from 8 MHz to 6600 Hz using powers of 2. I would need a 6.76 MHz crystal. But even if I had that crystal there is a problem with interrupt priorities. The coil drive rate and sampling rate must be an exact 4:3 ratio and there cannot be any jitter in either one or it will result in noisy data. So I can only use the timer that has the highest interrupt priority for coil drive and sampling. And the highest priority timer is not the most versatile one. It is an 8 bit timer with one compare register. 

I wound up using the timer in compare mode and reloading the timer, the compare register, and the mode on every interrupt. In compare mode the timer can change an I/O bit when the timer matches the compare register. I was able to drive the coil and read the A/D in a sequence of six interrupts spanning 3 cycles of the transmit signal. That is a rate of 13200 per sec. 

I will label the quadrants of those three cycles as Q0 through Q11. Q12 would be Q0 of the next three cycles. a quadrant is 90 degrees. I need to drive the coil on every 4th quadrant and read the A/D on every 3rd. This gets me an A/D every 270 degrees and takes 3 cycles to get a full set of data. The system is not fast enough to take a sample every 90 degrees. I want the coil drive pulses to be centered on Q0, Q4, and Q8. They should be centered so there will not be a phase shift if I change the drive pulse width. The A/D will be sampled at Q0, Q3, Q6, Q9. So interrupts have to occur at Q0, Q3, Q4, Q6, Q8, Q9. Those are the 6 interrupts. On each interrupt I have to set the timer interval for the next interrupt, set the compare register to the time at which I want the drive current to turn on or off, and set the mode to control whether the drive current turns on or off at the next compare. 

This is a table of what happens in the interrupt 

I Q A T C M

-------------------

1 0 1 3 w off

2 3 1 1 t-w on

3 4 0 2 w off

4 6 1 2 t-w on

5 8 0 1 w off 

6 9 1 3 t-w on 

The table columns are Interrupt, Quadrant, A/D, Timer, Comparator, Mode. w is 1/2 the drive pulse width, t is the time to the next interrupt. 

Reading the first row: interrupt 1 occurs at Q0, sample the A/D, set timer interval to 3 quadrants, and set the comparator to turn the drive current off after w time units. In the second row the drive current is turned on at t-w, that is, at w units before the next interrupt. 

Looking at rows 6 and 1 you can see that interrupt 6 turns the drive current on w units before the next interrupt at Q0 and interrupt 1 turns the current off w units after Q0. The drive pulse is 2w centered on Q0. The same thing happens around Q4 and Q8. 

I have a test version of this routine running. It looks very stable on the scope. The execution time is about 5.5 usec when there is no A/D and about 9.5 when there is. This works out to about 11% of the chip's throughput at 8 MHz, but I am not doing any filtering yet. 

Part 7

I have added a couple of accumulators and counters to the interrupt routine. 

I put in two 24 bit accumulators. Every time I read an A/D I add it to one of the accumulators and count. When I have taken 148 samples (74 in each accumulator) I transfer the totals to memory, reset the accumulators, set a flag, and count 60ths of a second down to 1 sec. 

The Basic program running in the background sends the data to a serial port so I can see it on my PC. It cannot send all the data it sees so it just sends one set of data per second. That means that 59 samples out of 60 are being discarded for every one that is displayed. I can see about 30 seconds worth of data on the screen. There are two columns of numbers one column reads about 16420 and the other is 7880. 

If you take the square root of the sum of the squares of those two numbers, then divide by 74, and multiply by 5 volts/1024 you get the peak voltage of the signal I am reading. Double that for the peak to peak. 

If you take the arctan(7880/16420) you get about 26 degrees. At 152 usec per cycle that is 11 usec. That means that the A/D conversion is beginning about 11 usec after the interrupt. 

When I first set this up I was seeing sudden jumps of over 100 in the data, but that turned out to be because of a timer that Basic has running. It is a low priority interrupt but apparently it keeps all other interrupts masked until it finishes. So that was delaying my interrupts and causing spikes in the samples. After disabling that clock, the noise dropped by more than a factor of ten. Now I typically see peak to peak noise of 10 or less. That is in a sum of 74 samples so reflecting it back to A/D I am seeing 10/74 or about 1/8 of the LSB. This is better than I expected. Also, if I put a target near the coil and move it by small amounts I can see the average values change by about 10. So I am also seeing a resolution of about 1/8 LSB. Though I may find voltage ranges where it wants to jump in larger increments than that. 

The interrupt routine now takes about 8 usec for no A/D, 13 usec with an A/D and a maximum of 19 usec every 60th of a sec when it stores the accumulated data. So it looks like there is still room in there for a filter. With the clean signal that I am reading now, the filter is not necessary. But when I start reading real data from the receive winding I expect it to be a lot noisier. 

Part 8

I said earlier that I would use a median filter on the raw A/D samples. A median filter takes the median of the last k input values and uses that as the output. It is very good at removing spikes, and it has a very low propagation delay for step inputs. 

But after getting averaged results that are better than one LSB at the A/D I became worried that the filter would kill the resolution I have been getting. For example: if a sequence of raw data samples were 5,5,4,5,5,5,4,5 they would average 4.75. I would interpret this sequence to be saying that the input is a little less than 5 and noise is causing the LSB to toggle. The fraction of the samples that are 4 vs. the fraction that are 5 gives an indication of how much less than 5 the input is. Taking an average of the data samples gives me more information than I could get from any one sample. But if I run that sequence through a median filter I will get all 5's out of it. I will have thrown away some valuable information. 

So I built two versions of the median filter. One is a normal version and the other is modified so that it will only reject spikes that are larger than +/- 1. It will pass the above sequence without changing it. 

When I watch my averaged data I see some slow drift, probably thermal drift. The components are mounted on a breadboard that is exposed to air currents. Over a period of a minute or so I can see drift of about 0.1% or more. I thought this would be a good test for the median filters. I would expect that if noise is low and the input to the A/D is drifting, then the output of the median filter should tend to move in jumps. After putting in the normal median filter I see the jumps I expected on one of my two data channels. The other channel seems to change more smoothly. I would guess that this is because one channel has more noise than the other. The channel with less noise is more likely to move in jumps. The modified filter did not exhibit the jumps on either channel. I suspect that when I am reading the real input data there will be enough noise that it will not matter which version of the median filter I use, but for now I will use the modified one. 

I think I am about done with the high speed interrupt routine. The final toll is: the interrupt takes 8 usec when it just drives the coil, 11 usec when it takes an A/D, and 24 usec when it takes an A/D, filters and accumulates. There are an equal number of the three kinds of interrupts, so the average is 14.3 usec, or 19% of the chip's throughput. Every 60th of a second there is an extra 7 usec on one of the interrupts to store the data and update clocks. 

I am getting good quality data at a 60 Hz rate from a clean input signal. I guess the next step is to build a preamp and see how it looks when I read the signal from the receive winding. 

Part 9

Now that the big interrupt routine is done (except for fine tuning) perhaps I should review what it does. This routine performs two functions. It provides a 6600 Hz transmit signal, and it digitizes and demodulates the receive signal. 

The transmit signal is a 6600 Hz rectangular pulse. This is a logic signal which can be used to control a current source which drives the coil. This method is suitable for White's BM coils which use a parallel resonant circuit (tank circuit). It is not suitable for other coils that have an un-tuned transmit winding (like Tesoro). The transmit pulse has a variable duty cycle. I plan to use this to try to get one or two more bits of dynamic range from the system by cutting the transmit signal to 1/2 or 1/4 of the normal strength. There are some practical problems to overcome to achieve this, but I wanted it designed in to the front end so it is available later. 

The received signal is digitized by the on board 10 bit A/D converter, and demodulated in a dual synchronous demodulator which produces two output channels. The demodulation is achieved by sampling the signal at 4 phase angles (P, P+90, P+180, P+270). The P and P+180 samples are subtracted from each other to produce the signal for one channel. The P+90 and P+270 samples are subtracted from each other for the other channel. Both signals are run through a median filter then added into 24 bit accumulators. Sixty times a second the contents of the accumulators are dumped into memory and the accumulators are reset. This produces two signal channels at 60 Hz. With full scale inputs, these output signals can be +/- 37851, which is a little over 16 bits. 

Part 10

[image: image1.png]
This is the test circuit I have been using. 

The DRIVE signal is a 6600 Hz pulse from the processor. The transistor, diodes, and current sensing resistor R form the current source. I am using R = 100 ohms to source 10 mA which gives 3.5 V p-p across the transmit coil. I have also used 10K and 33K for R to test with very small signals. I will probably set the current around 15 mA in the final version. White's uses 30 mA in the 6000 Di, but they have a higher supply voltage and have more headroom for the voltage swing on the coil. 

Part 11
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This diagram shows some waveforms and timing. 

The top trace represents the coil drive signal from the processor. 

Then middle trace represents the resultant voltage developed across the transmit winding. 

The bottom section shows a timeline of the interrupts. The shortest interrupts only reset the timer for the next interrupt and to control the drive signal. The other interrupts also read the A/D. The longest interrupts also filter and accumulate the data. This does not show the extra time needed every 60th of a second to low pass filter and store the data. The duration of the interrupts shown here are only approximate. 

Part 12
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I built a copy of this preamp from the 6000 Di. I did not have any of the right parts, but it does not seem to be too sensitive to component values. I guess it has a wide enough bandwidth that the values are not too critical. 

A penny on the coil gives about 300 mV out of the preamp. This is about half of what I wanted, so I will add an op amp behind it later. I will also want more gain if I can get some kind of automatic gain control working. But right now I can already see a penny at 5 inches from the 5.3 coil. That is close to one coil diameter so I am already in the ball park. 

FIRST DATA 

This is the first set of data from the receive coil. 

Air -155, -98

Ferrite 1463, 2846

Foil 346, -425

Penny 268, -2731

Penny at 3" -141 -155 

Subtracting the Air values from the others and then calculating the angle I get. 

Ferrite 1618, 2944, 61°

Foil 501, -327, -33°

Penny 423, -2633, -81°

Penny at 3" 14, -57, -76° 

Where the third number is the angle in degrees. By themselves these angles do not mean anything because nothing has been calibrated. But using ferrite as the reference I get. 

Foil = +94°

Penny = +142°

Penny at 3" = +137° 

These are the phase angles of these targets relative to a ferrite reference. The approximate numbers that I would expect for these targets are foil +100° and zinc penny +150°. So roughly speaking, it works. Notice that the signal strength for the penny at 3 inches from the coil is quite low, there are not many bits to work with. I am going to have to get some more gain from somewhere. 

PROBLEMS 

The first problem I noticed with the preamp is that the output can only swing 3.5 V p-p before it starts to clip. that means that only 70% of the A/D range is available. So I will need to look for a different op-amp that can operate from 5 Volts and let the output swing closer to Vcc and GND. 

The second problem was that I got a large signal from my first air test. That turned out to be because I had the receive winding connected backwards. Apparently there is quite a bit of capacitive coupling from the transmit winding to one end of the receive winding. When I got that end of the receive winding connected to ground the air signal improved quite a bit. But there is still quite a bit of air signal compared to the signal from a penny at 3 inches. Right now my circuit has long component leads and wires all over the place. Hopefully when I go to a tighter layout some of that air signal will disappear. 

Part 13
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This is the preamp circuit I am using now. I had to make some alterations to White's design because I am using a single ended power supply while they use a double. The 10K resistors bias the signal at Vcc/2 to center it in the A/D range. 

The first amplifier stage is basically White's design. It is a band pass filter with the upper and lower cutoff frequencies both approximately at 6600 Hz. This gives a gain of 1/2 Rf / Rin or about 50. In this stage the signal phase may be shifted by an amount that depends on all 4 components. White's puts a trimmer in there so they can adjust the phase shift to 0. I don't care about the phase shift in this stage because I will calibrate everything in software. The output of this stage goes to one of the A/D channels. 

The second stage is similar. I want a gain of 4 in this stage, but I do not want any phase shift because I want both A/D channels to see the same phase. So I moved the upper and lower cutoff frequencies away from 6600 Hz. This gives no phase shift, and the gain is Rf / Rin. The total gain of both stages is 200. The output of this stage goes to a second A/D channel. 

I have also increased the coil drive current to 15 mA. A penny on the coil now gives a 500 mV signal out of the first stage and 2 V out of the second. The low gain channel has a lot of headroom for strong ground signals or large targets before it overloads. The high gain channel has less headroom but gives more signal to work with on weak targets. I can now see a penny at 7 inches from the 5.3 coil. 

Part 14
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This is an updated coil drive circuit. Since I have a preamp now, I no longer need to pick off a signal from the transmit coil to test with. So this is just to drive the coil. It is now set for 15 mA. 

I added a .001 cap because I found there was processor noise on the logic DRIVE signal. That noise was getting into the drive current and showing up in the receive signal. This cap eliminates most of that noise and also softens the edges of the pulse. The air signal from the coil looks much better now. 

I will have to change this again when I get a real reference diode to replace the three series diodes I am using as a reference. 

Part 15
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I want to be able to visualize the numbers that come out of the detector on a graph like the one above. To do that I have to calibrate the detector. 

The first step was to put in an air balance function. Induction balanced coils are designed to balance out the receive signal when the coil is in the air and not near any ferrous or conductive material. But the balancing is not perfect. There is typically some signal even when there is nothing near the coil. So when I hold the coil in the air and execute the air balance function it stores the current values it is reading and then subtracts those numbers from all subsequent readings. 

The next step is to calibrate the phase angle. There is some delay between the time an interrupt occurs to tell me to read the A/D and when I actually get around to doing it. There can also be a phase shift in the preamp. So I will calibrate the system by reading the signal from a ferrite target. I would like to have ferrite fall on the negative x axis of the graph. The raw numbers coming out of the demodulator are about 110° away from where I want them. 

If you consider the values from the demodulator to be a vector (x,y) all the vectors can be rotated by multiplying them by a rotation matrix. To rotate a vector by an angle A multiply by the matrix: 

cos(A) -sin(A)

sin(A) cos(A) 

To rotate them 110 degrees multiply by: 

-.34 -.94

.94 -.34 

If I name the rotated values Xr, and Yr this works out to: 

Xr = -.34X -.94Y

Yr = .94X -.34Y 

So I put these calculations in the program and let it display Xr, and Yr. This is what I got for a set of test targets: 

Ferrite -15325, 360

Foil 400, 4155

Nickel 1887 4246

Zinc Penny 14852, 10853

Dime 16950, 6782 

These number are plotted on the graph at the top. 

In mathematics the angle 0 usually lies along the +x axis and angles are measured counterclockwise from there. But in metal detecting a different convention has developed. Discrimination controls are usually turned clockwise to discriminate out more conductive materials, and meters usually deflect to the right for more conductive targets, and higher VDI numbers are usually assigned to targets with higher conductivity. So I will be measuring angles in a clockwise direction, and I will use the +y axis as the 0 angle. This means that I will calculate the angle by taking arctan(x/y) rather than arctan(y/x). There will be some confusion no mater how I do it, but I think this way it will be less confusing for people familiar with metered detectors and especially the XLT. Calculating the phase angles of the 5 targets above this way, I get Ferrite = -89°, Foil = 5°, Nickel = 24°, zPenny = 54°, Dime = 68°. 

Target angles will be spread over the range -90° to +90°. These should roughly correspond to White's -95 to +95 DC Phase values. 

Part 16
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Ground Balancing 

The block diagram above shows how I am going to ground balance the detector. 

The transmit signal is an AC signal that can be described as having an amplitude T and varying with time as sin(t). The receive signal, S sin(t+a), has amplitude S and is phase shifted by an angle a. 

The demodulator samples the receive signal at times p and p+90°. It removes t from the signal and gives DC outputs S sin(p-a) and S sin(p+90°-a). But sin(p+90°) is also cos(p), so we will call the second output S cos(p-a). 

Then we rotate this output by the angle -p giving S sin(-a) and S cos(-a) which we call x and y. We can easily calculate the phase angle a from these values. X/y is sin(-a)/cos(-a) which is tan(-a). So we can find a by taking arctan(x/y). 

Then we rotate x,y by the angle g, giving the outputs G = S sin(g-a) and GQ = S cos(g-a). If g is the phase angle of the ground signal then the ground signal will produce G = S sin(0) which is 0, and GQ = S cos(0) which is S. So all of the ground signal appears in GQ and none of it appears in G. G is known as the ground balanced signal. 

Non discriminating or "All Metal" detectors only need the signal G, so they usually only have one demodulator and they phase shift the demodulator clock to get G directly out of the demodulator. 

Discriminating detectors need more information so they can calculate the phase shift a. They may have 3 demodulators with clocks shifted to give x, y, G directly from the demodulators. Or they may have two demodulators giving x,y and rotate those to get G. Or they may have two demodulators that give G and GQ directly. This last option is commonly used in detectors with a factory set ground balance. 

I originally planed to use the x,y,G signals for discrimination. That requires motion filters for 3 channels. Now I am leaning towards using the G,GQ signals which would only require filtering two channels. In that case I would not need the x,y signals and could rotate the raw data just once by the angle g-p to get G,GQ. But during development I would prefer to have x,y available because they are familiar and I can get a good feel for how the system is working by looking at those values. 

Part 17

The detector has been displaying x,y data pairs, and up until now I have been calculating the phase angles with a calculator. Now I have added an arctan routine so the detector can calculate the angles and display them with the x,y values. 

Carl and Charles have both sent me op-amps to try. Charles' MPC602 arrived first so I tried it in place of the Motorola TL082 I have been using. The 602 output swings 4.6 volts before it starts to clip. This gives me about 30% more range on the input signal than I was getting before. 

With these new additions I ran some more tests with the 5.3 coil. These are DC (non-motion) tests. In an air test it can ID a penny or dime at 5" from the coil but not at 7". At 5" the displayed angle jumps around within a 6° range. With the coil sitting on my concrete floor it can ID them at 3 inches but not 5". This is with the coil on the floor and the coin above the coil. With the coil one inch off the floor it can ID them at 5" but not as well as in the air test. 

With the current configuration, the relative strengths of signals is: penny at 5" = 34, penny at 3" = 190, penny on the coil = 8000, coil 1" off the floor = 5300, coil on floor = 16300. So it was able to give a reasonable ID when the ground signal strength was about 100 times as strong as the coin signal. 

I don't know if I am going to be able to squeeze any more performance out of this 10 bit A/D, but so far, I consider this a success. 

At the beginning I did not have much choice about what to do first, because I needed a signal to look at before I could do anything else. Now that I have a signal, the options are opening up. It's hard to decide whether to work on an audio output so I can hear the all metal signal, or to start putting in motion filters. 

I am surprised that the first resource I am running out of is program memory. I expected processor cycles or RAM to be more of a problem. So far I am using about 25% of the processor cycles, about 70% of the RAM and 90% of the program memory. I am going to have to change my programming style to trade off processor cycles for program memory. Of course that would happen at this stage anyway because I am about done with the high speed code and starting on the 60 Hz code where I don't have to worry about speed as much. But I may have to go back and re-write some of the high speed code to reclaim memory space. 

Part 18
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I decided to add a motion filter. I used the design above which has a delay line that stores the 7 most recent data samples. Each sample can be multiplied by a coefficient, then all the products are summed. This is called a finite impulse response filter. 

For the first try I used a very simple filter with coefficients 1,0,-1,0,0,0,0. In other words I used the most recent data minus the data from two samples back. This will differentiate any signals that are less than 7.5 Hz. This will tell us how fast the signal is changing. Since target signals usually change quickly and ground signals change slowly this helps to separate the target signal from the ground signal. 

The filter is running all the time and producing output at 60 samples per second, but I can only display about one sample per second. So I put in a moving threshold. I compare each sample out of the filter to the threshold. If the sample is below the threshold I discard it. If the sample is above the threshold I save the sample, replacing the previously saved value, and I also set the threshold to the sample value, this causes lower values to be ignored. The result is to save the largest value from one swing of the coil. I let the threshold decay with a time constant of 2 seconds so that it will eventually get low enough for the next swing of the coil. Then once a second I display the saved value and its phase angle. 

In an air test it can detect and ID a penny at 3". The ID is pretty good but it does not trigger every time. At 5" it does not trigger at all. It is a little hard to judge how fast I am swinging the penny past the coil, but I think I am getting the best results at between 1 and 2 feet per second. 

With the coil on the concrete floor it can still ID the penny at 3" but the ID is a little sloppier. This is with a fairly strong but constant ground signal. I have not quite figured out yet how I am going to test with a changing ground signal on my concrete floor. 

Part 19

The performance of my first motion filter was not very good, so I spent some time looking at it. I set up my windmill like device that has a penny on the end of one of the arms, It can spin at a constant speed and swing the penny past the coil at the same distance every time. This gives a source of consistent signals to test with. 

I actually have one more stage in my delay line than I showed in the drawing last time. I was just running out of room on the drawing. So I can have 8 coefficients in the filter. I changed to -1, -1, +1, +1, +1, +1, -1, -1. This represents a bandpass filter with a center frequency of 7.5 Hz. This worked a little better. 

I found that my low pass filter was causing a problem. After accumulating A/D samples to produce 60 Hz samples I had added a low pass filter with a time constant of 4/60. This worked fine in the no motion case, but when I turned off the low pass filter I found that the optimum speed for this filter was quite fast, around 60" per sec. At that speed the signal from the coin was quite brief, around .07 sec and the low pass filter would take most of it out. 

So without the LP filter, and with a sweep speed of 5 feet per second it was working well at 4" with the ID's spread over about 10°. It would even work marginally at 5" but the ID's were spread over 20° or more. Now the problem was how to slow it down. To slow down that FIR filter I would have to increase the length of the delay line which would use up more memory or I would have to slow down the sample rate. Or I could go to an infinite impulse response filter which would use less memory. 

For now I decided to drop the sample rate to 30 Hz. I was not sure this was a good idea because it does not seem to be very many samples on the target. This dropped the sweep speed to 30 inches per second, which is fast but not an impossible sweep speed. Since I could not use the LP filter I replaced it with a median filter which I thought would not cause the same problem ( I will still use the LP filter in pinpoint mode). But the median filter also cut into the signal. The peak of the target signal is only about two samples wide and the median filter would lop off the tallest of the two. 

So one conclusion I have reached is that the FIR delay line would have to be at least 12 samples long, and longer would be better. But each position in the delay line is two channels of 24 bit data. That is 6 bytes per delay stage. Sixteen stages would eat up almost 20% of my RAM. 

Another conclusion is that I should provide a way to switch sample rates between 60, 30, and 15 Hz. I had planned to provide variable filter speeds by changing filter coefficients, but it suddenly seems like a good idea to switch clock rates. The 15 Hz would be for slow sweeps. At slower clock speeds I would be accumulating more A/D samples and getting a better signal to noise ratio. 

Part 20

I found the main cause of the performance problems in motion mode. It is something I was worried about at the beginning of the project. The A/D runs off a 4 usec clock. That means that the interval between A/D samples will always be a multiple of 4 usec. The timer that controls the coil drive pulses and starts the A/D must stay in sync with the A/D clock or there will be timing jitter that will cause noise in the input signal. 

When I first set up the timer interrupt I used a 4 usec timer clock and carefully checked to make sure there was no jitter. I later changed the timer clock to 1 usec to get finer control over the coil drive pulse width. I could swear that I checked at that time to make sure the clocks were staying in sync. But somewhere along the way they got out of sync. What was happening was that when the timer overflowed causing the timer interrupt I was not getting the timer reloaded before the next 1 usec tick of the timer clock. So when I requested a 76 usec interrupt period I was getting 77. Since 77 is not divisible by 4 the A/D was not sampling at the correct time. Some A/D intervals would be 4 usec longer than others. That caused noise in the data. There was no problem with a 4 usec timer clock because 4 usec gave plenty of time to reset the timer before the next tick. 

This noise was not causing too much trouble in air tests because it was a small percentage of the signal size. It mainly showed up as a spreading of the measured phase angles. But in tests with a strong ground signal the noise was a percentage of the ground signal and was stronger than the weak target signal. This is one of the problem with air tests. They don't reveal all the flaws in the system. I fixed the problem by reducing all the timer intervals by 1 usec. So I request 75 to get the 76 usec interval I need. 

The results for motion mode with 5.3 coil now are: air test at 5" triggers every time and phase angles are within a range of 10°. With the coil on the concrete floor and penny 5" above, it triggers most of the time and the phase angles are within a 15° range. 

This is the second time in the project that I have come to a point where the signal was buried in noise and I thought, "This is the end. This approach of reading the received signal directly with an A/D is just not going to work." But each time it has turned out to be a specific problem that could be fixed rather than an inherent limitation of this approach. 

Part 21

I found another synchronization problem between the timer and A/D clocks. After I fixed the previous problem I started seeing the displayed phase angle occasional jump 2, 4, or 6° while I was typing commands. The problem was that the serial interrupt routine keeps other interrupts masked until it reads the character from the UART. That could delay the timer interrupt long enough for the timer to get out of sync by 1, 2, or 3 usec from the A/D clock, 4 usec would get it back in sync again. 

Of course this was also happening before, but I did not see it then because the clocks were rapidly getting in and out of sync and the filters showed me the average phase. With the previous problem fixed the clocks could get out of phase and stay that way. So I gave up on the idea of a 1 usec timer and went back to 4 usec, which is the same as the A/D. Now they always have to keep the same relationship. If the timer does slip it has to be in jumps of 4 usec, so there may be one bad reading but the clocks stay in phase. 

I think I am approaching the limits of what I will be able to do with this 10 bit A/D. With a 4 volt steady state ground signal from the high gain output of the preamp I can get a reasonably good phase angle from a 4 milivolt target signal (a penny at 5"). That is a 1000:1 ratio of ground to target signals. The 4 milivolt signal is 0.8 LSB. From the results I see, I would estimate that I am getting at least 3 bits below 1 LSB. That is about 13 to 14 bits of useable data. 

I may be able to improve it a little by better filtering, but I think I am getting near the end. I could increase the preamp gain to get more distance in an air test, but I don't see much point in that. I am interested in studying ways of separating the target signal from the ground signal and improving the identification of targets in the presence of a strong ground signal. More gain is not going to help that. In fact If I increase the ground signal a little more the detector will automatically switch to the low gain preamp output to keep the signal within the A/D range. That drops the gain by a factor of 4 and the target signal is then just .2 LSB. At that point I cannot detect the penny at 5" any more. It is hidden in noise. One possible improvement is to have more levels of gain and to only drop the gain by a factor of 2 at each step. That would allow picking a more optimum gain for each level of ground signal. 

I had concluded before I bought the microcontroller board that at least a 12 bit A/D would be required for good results. But I could not find a chip in the families that I was interested in that had a 12 bit A/D and flash memory. So I went ahead with 10 bits to see how far I could get. I am pleased with the results I am getting from this 10 bit A/D, but I think that it is going to max out with a depth of just below one coil diameter. From the results I have seen so far I would conclude that this design using a 12 bit A/D would get a depth of just over one coil diameter in weak ground. I think that with a 16 bit A/D it could equal the commercial metal detectors. 

Part 22
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The ink was hardly dry on my last post saying that I would not be able to get any more signal out of the 10 bit A/D, when I figured out a possible way to get more signal for the All Metal mode. I was looking at the circuit and trying to figure out how I could balance out some of the ground signal without adding too much hardware. The conventional way to do it is to demodulate and ground balance in hardware to get an all metal signal that can be read with fewer A/D bits. For discrimination, at least some of the motion filtering is done in hardware. But I am stubbornly clinging to my notion of doing the demodulation in the processor. 

The Analog Devices ADuC812 is an interesting chip because it has a 12 bit A/D and two 12 bit D/A's. That presents the possibility of using a design like the one above that would use a D/A to create a synthetic ground signal that could be subtracted from the actual ground signal. Then the A/D would only have to read the error between the simulated and the actual ground signals. This would allow more gain to be used. I was looking at this as a future project. 

That's when it occurred to me that I can do a rough ground balance before the A/D without adding any hardware. It is not very practical to move the A/D sampling points relative to the timer interrupt, but I can move the coil drive signal. I decided to give up the variable width drive signal in favor of a variable phase drive signal. One cycle of the transmit signal is 152 usec. The timer clock has a resolution of 4 usec. So there are 38 possible angles at which I can position the drive signal relative to the A/D sample times. That lets me move the zero crossing of the ground signal to within about 4.5 degrees of one of the sample points. At that angle the signal is less than 10% of its peak value. So I could use 10 times as much gain in that channel without going out of the A/D range. I will have to do the remainder of the ground balancing in software. 

This required changing to 4 interrupts per cycle instead of the two I have been using. But the one resource I still had a lot of was processor cycles. It seems worth it to give up some processor time to get more sensitivity. I have tested the variable phase drive and it seems to work ok. I will have to build some more gain into the preamp. And I will have to let the two channels scale themselves independently. Right now when the signal gets too large both channels automatically switch to low gain even if only one of them is close to overloading. 

Unfortunately this will not help in target ID because it only gives more sensitivity in one channel. 

Part 23
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I have added a third stage to the preamp and fixed a couple of problem in the previous version. 

In the previous version I had intended the final stage to have a gain of 4. When I tested the design in part 13, I put one scope probe on the input and one on the output and set the vertical gain two notches apart and saw what I expected, a gain of 4. However, the difference in gain between those two notches on the scope was actually 5. I had gotten the gain wrong, but I did not notice it for a few days until I wrote the code to make it autoscale. Then I could see a jump in the signal when it switched gain. The second problem was that I said I made the bandwidth wide enough so there would not be any phase shift in that stage. I was wrong about that too. 

This design has three outputs with relative gains of 1, 4, and 16, and the phase shift in the final stages is small enough that it has not caused any problem yet. I am using the AD8032 op-amp. It works about the same as the MCP602 except that it recovers more quickly after hitting the rail. 

I manually shift the phase of the drive signal in 9° steps to do a coarse ground balance. This moves the sampling point of one of the demodulators near the zero crossing of the ground signal. The remainder of the ground balancing is done by rotating the received signal in software. 

The two channels of the demodulator autoscale independently. If a channel sees a voltage larger than 4.3 volts it steps down to the next lower gain. That drops the signal to about 1.1 volts. If it drops below .75 volts then it steps up to the next higher gain. The channel that is sampling near the peak of the signal will have to use a lower gain than the channel that is sampling near the zero crossing. 

With this arrangement it now detects a penny at 6" in the presence of a constant ground signal about 1000 times stronger than the penny signal. That is about one coil diameter. With a penny on one arm of the windmill and a piece of foil on the other, the displayed phase angle switches back and forth between the foil range and penny range. But there is quite a bit of jumping around within the ranges. 

I still have not worked out how to produce a repeatable variable ground signal for testing. 

Part 24

With the current design one of the demodulators samples near the zero crossing of the ground signal and gets a good ratio of target to ground signals. But the other demodulator is sampling near the peak of the ground signal which gives a poor target to ground signal ratio. This puts a limit on the sensitivity that can be achieved. 

As a test I set up conditions that gave a ground signal that would have been 12 v p-p out of the final stage of the preamp, if it were not clipping. In this case the detector has to use a lower gain so the signal does not get clipped. It has to sample the signal from the second stage of the preamp. 

Then I added a sign wave signal into the preamp with the right amplitude and phase to cancel some of the ground signal. I reduced it from 12 volts to less than 4 volts so the highest gain of the preamp could be used. Under these conditions it could get a good ID from foil and a penny from 7". 

This is not a practical solution because I could not adjust the amplitude and phase of the ground canceling signal for changing ground conditions. But it indicates that I could improve the sensitivity if I could generate the proper signal. Unfortunately, I cannot see any way of generating such a signal without adding more hardware. 

Part 25

I am going to declare the front end of the detector to be finished. It has enough sensitivity to ID targets at a distance of one coil diameter. I think that will be enough for me to experiment with different motion filters and discrimination methods. 

I think the front end code is stable enough now to start publishing it a piece at a time. This piece is part of the interrupt routine that drives the coil and demodulates the received signal. 

There are some lines of code that are marked with the comment "debug". These lines play no part in the operation of the detector. They are just for diagnostic purposes. 

Because timing is critical in this routine, some values are calculated ahead of time, during the previous interrupt. This makes the code difficult to understand. For example when I load a numeric value for the period of an interrupt, that is the value that will be stuffed in the timer the next time an interrupt occurs. Also an A/D conversion takes more than one quarter cycle to complete, so I cannot start a conversion and wait around for it to finish. I start a conversion and come back 3 interrupts later to pick up the results. So each time I call the A/D routine I am picking up results from a conversion I started 3 interrupts earlier and then starting a new conversion. 

Some phases of the interrupt have to execute code that is common to other phases. So to conserve program memory, after one phase does something unique to that phase, it may jump to the code for another phase to execute common code. 

T2_Ovf: ; Timer2 Overflow Handler

; The T2 overflow interrupt is used to drive the transmit winding of
; the search coil and to read the receive signal and demodulate it.
; T2 is using a 4 usec clock, so each count of the clock or increment 
; of the compare register is worth 4 usec.
; One cycle of the transmit signal is 152 usec or 38 counts.
; One quarter cycle should be 38/4 = 9.5 counts but only integers are
; allowed, so some quarter cycles will be 9 counts and others will
; be 10.
; The receive signal is sampled every 270 degrees.
; This routine goes through 12 phases for the 12 quarter cycles of the
; three full cycles it takes to get one full set of data for the
; demodulators.
 
        out     TCCR2,T2MODE    ; quickly reload T2 for next interrupt
        out     OCR2,T2PW       ;
        out     TCNT2,T2COUNT
 
        sbi     portc,5         ; debug,
        push    r18             ; save status and registers
        in      r18,sreg        ;
        push    r18
        push    r17
        push    r16
        push    ZH
        push    ZL
 
        ; which interrupt phase are we in?
        ; calculate address to jump to
        ldi     ZL,low(T2jtab/2)
        ldi     ZH,high(T2jtab/2)
        clr     r16
        add     ZL,T2PHASE
        adc     ZH,r16
        inc     T2PHASE         ; next phase
        lds     T2MODE,coiloff  ; load default action
        ijmp                    ; jump to code for this phase
        
T2jtab:                         ; Jump table
        rjmp    T2q0
        rjmp    T2q1
        rjmp    T2q2
        rjmp    T2q3
        rjmp    T2q4
        rjmp    T2q5
        rjmp    T2q6
        rjmp    T2q7
        rjmp    T2q8
        rjmp    T2q9
        rjmp    T2q10
        rjmp    T2q11
 
; The 12 interrupt phases
; ----- Q0 group (0 degrees) -----
T2q0:
        ldi     ZL,low(Itemp)   ; demodulator I
        ldi     ZH,high(Itemp)  ;
        set                     ; say sub
        rcall   AD              ; do A/D
        rjmp    T2q4
T2q8:
        lds     r16,Ichan       ; set gain for next A/D
        out     ADMUX,r16
T2q4:
        ldi     r16,-10         ; next interrupt period
        mov     T2COUNT,r16
        ldi     r16,0           ; coil drive, sub 0
        mov     T2PW,r16        ; put it here temporarily
        rjmp    T2end1
 
; ----- Q1 group (90 degrees) -----
T2q9:
        ldi     ZL,low(Qtemp)   ; demodulator Q
        ldi     ZH,high(Qtemp)  ;
        clt                     ; say add
        rcall   AD              ; do A/D
        rjmp    T2q1
T2q5:
        lds     r16,Qchan       ; set gain for next A/D
        out     ADMUX,r16
T2q1:
        ldi     r16,-10         ; next interrupt period
        mov     T2COUNT,r16
        ldi     r16,-28         ; coil drive, sub 28
        mov     T2PW,r16        ; put it here temporarily
        rjmp    T2end1
 
; ----- Q2 group (180 degrees) -----
T2q6:
        ldi     ZL,low(Itemp)   ; demodulator I
        ldi     ZH,high(Itemp)  ;
        clt                     ; say add
        rcall   AD              ; do A/D
        rjmp    T2q10
T2q2:
        lds     r16,Ichan       ; set gain for next A/D
        out     ADMUX,r16
T2q10:
        ldi     r16,-9          ; next interrupt period 
        mov     T2COUNT,r16
        ldi     r16,-19         ; coil drive, sub 19
        mov     T2PW,r16        ; put it here temporarily
        rjmp    T2end1
 

; ----- Q3 group (270 degrees) -----
T2q3:
        ldi     ZL,low(Qtemp)   ; demodulator Q
        ldi     ZH,high(Qtemp)  ;
        set                     ; say sub
        rcall   AD              ; do A/D
        rjmp    T2q7
 
T2q11:
        clr     T2PHASE         ; phase 0
        lds     r16,Qchan       ; set gain for next A/D
        out     ADMUX,r16
T2q7:
        ldi     r16,-9          ; next interrupt period
        mov     T2COUNT,r16
        ldi     r16,-10         ; coil drive, sub 10
        mov     T2PW,r16        ; put it here temporarily
;       rjmp    T2end1
 
; ----- end of interrupt phases -----
 
T2end1:
        ;finish seting up T2 pulse width
        lds     r16,drvangle    ; coil drive angle 
        add     r16,T2PW        ; modify
        sbrc    r16,7           ; skip if positive
        subi    r16,-38         ; else add 38 to make pos
        cpi     r16,19          ; if >= 19
        brlt    T2end2
        subi    r16,19          ; wrap and
        ldi     r17,00010000b   ; invert action
        eor     T2MODE,r17
T2end2: 
        mov     T2PW,r16
        neg     T2PW            ; T2 counts up
        tst     T2PHASE         ; is it time to count 2200dths?
        brne    T2_Ovf_out
        rcall   count2200       ; count 2200dths of a sec  
 
T2_Ovf_out:
        pop     ZL              ; restore registers and status
        pop     ZH
        pop     r16
        pop     r17
        pop     r18
        out     sreg,r18
        pop     r18
        cbi     portc,5         ; debug,
        reti

Part 26

More code. This is the A/D routine and the 16 bit median filter. Together with the timer 2 interrupt these make up the high speed part of the detector code. The timer 2 interrupt occurs 26,400 times per second. It calls the A/D routine 8800 times per second, and it in turn calls the median filter 4400 times per second. The timer 2 interrupt also calls count2200 2200 times per second, but the only thing it does at that rate is update a counter. Count2200 does other things at 60 or 30 times per second. 

AD:     ; Read A/D converter, filter, and accumulate data.
        ; Enter with address of data struct in Z
        ; Flag T determines whether this sample is added to or 
        ; subtracted from the accumulator
        ; r16 r17 r18 are free
 
        sbi     portd,4         ; debug, scope strobe
        in      r16,ADCL        ; get previous A/D results
        in      r17,ADCH
        sbi     ADCSR,4         ;Clear ADC INT SAFE
        sbi     ADCSR,4         ;Clear ADC INT
        sbi     ADCSR,6         ; start next conversion
        andi    r17,00000011b   ; mask off unused bits
        brtc    ADaccum         ; add or sub?
        st      Z+,r16          ; save this sample for next time
        st      Z,r17
        rjmp    ADexit
 
ADaccum:
        ld      r18,Z+          ; sub saved sample from this one
        sub     r16,r18
        ld      r18,Z+
        sbc     r17,r18
        lds     r18,debug       ; debug flags
        sbrc    r18,0           ; debug, skip if no flag
        rcall   putcirc         ; debug,
        lds     r18,fflag       ; filter flag
        sbrc    r18,1           ; skip if flag clear
        adiw    ZL,4            ; mfilt does this
        sbrs    r18,1           ; skip if flag set
        rcall   mfilt16         ; median filter
        ld      r18,Z           ; accumulate data as 24 bits
        add     r18,r16         ; low byte
        st      Z+,r18
        ld      r18,Z   
        adc     r18,r17         ; middle byte
        st      Z+,r18
        clr     r16             ; extend sign
        sbrc    r17,7           ; test sign
        ser     r16
        ld      r18,Z
        adc     r18,r16         ; high byte
        st      Z+,r18          ;
 
ADexit:
        cbi     portd,4         ; debug, scope strobe
        ret
 
;***********************************************************************
;*
;* "mfilt16"
;* 3 point median filter for 16 bit signed data
;*
;* Number of words      :    
;* Number of cycles     : 72 + 12 in modified version
;* Low registers used   :0 
;* High registers used  :7 (r16-r22)
;* Pointers used        :Y,Z
;*
;***********************************************************************
 
;***** Subroutine Register Variables
 
#define al      r16
#define ah      r17
#define bl      r18
#define bh      r19
#define cl      r20
#define ch      r21
#define temp    r22
#define mflag   r28 
 
mfilt16:
;*****  Enter with new data in A (r16,r17)
;       and address of filter data in Z
;       Exit with filtered data in r16,r17
;       and Z incremented by 4
;       Instructions marked with * are a modification
;       that allows 1 bit of noise through
 
        push    YH
        push    YL
        push    r22
        push    r21
        push    r20
        push    r19
        push    r18
        clr     mflag           ; clear flags
        clr     YH
        ld      bl,Z            ; get filter data b
        ldd     bh,Z+1
        ldd     cl,Z+2          ; get filter data c
        ldd     ch,Z+3
        cp      bl,al           ; compare a and b
        cpc     bh,ah
        brge    bgea            ; 
        ori     mflag,4         ; set if b is less than a
bgea:                           
        cp      al,cl
        cpc     ah,ch           ; compare c and a
        brge    agec            ;
        ori     mflag,2         ; set if a is less than c
agec:   
        cp      cl,bl
        cpc     ch,bh           ; compare b and c
        brge    cgeb            ;
        ori     mflag,1         ; set if c is less than b
cgeb:           
        ldi     temp,7          ; 
        sbrc    mflag,2         ; test msb of flag bits
        eor     mflag,temp      ; fold around 3 
        breq    alleq           ; if 0, all were equal
        dec     mflag           ; else reduce 1,2,3 to 0,1,2
alleq:  add     mflag,mflag     ; compute offset to median, mflag is YL
        ori     mflag,16        ; address of r16
 
;       We do not need c any more
;       Shift a and b to b and c
;       We will need these the next time the filter is called
 
        st      Z+,al           ; store filter data b
        st      Z+,ah
        st      Z+,bl           ; store filter data c
        st      Z+,bh           ;
        ld      temp,Y          ;*was there any noise?
        cp      temp,al         ;*
        ldd     temp,Y+1        ;*
        cpc     temp,ah         ;*
        ld      r16,Y+          ; get median
        ld      r17,Y
        breq    nonoise         ;*no noise
        brlt    posnoise        ;*
        subi    r16,1           ;*if neg noise, subtract 1 from median
        sbci    r17,0           ;*
        rjmp    nonoise         ;*
posnoise:                       ;*
        subi    r16,-1          ;*if pos noise, add 1 to median
        sbci    r17,-1          ;*
nonoise:                        ;*
        pop     r18
        pop     r19
        pop     r20
        pop     r21
        pop     r22
        pop     YL
        pop     YH
        ret
 
;***************************************************************************
 
; Data
 
#dseg
;struct
Itemp:          ds      2
Imfilt:         ds      4       ;must follow Itemp
Iaccum:         ds      3       ;must follow Imfilt
 
;struct
Qtemp:          ds      2
Qmfilt:         ds      4       ;must follow Qtemp
Qaccum:         ds      3       ;must follow Qmfilt
 
#define IQhold  6
#define IQair   9
#define IQchan  12
;struct
Idcmfilt:       ds      6
Ihold:          ds      3
Iair:           ds      3
Ichan:          ds      1
 
;struct
Qdcmfilt:       ds      6
Qhold:          ds      3
Qair:           ds      3
Qchan:          ds      1
 
; struct
; The following data must be in pairs I,Q or cos,sin or x,y
Idc:            ds      3
Qdc:            ds      3
calcos:         ds      2
calsin:         ds      2
#define NDELAY 11
Xcal:           ds      3       ;12 most recient samples
Ycal:           ds      3       ;12 most recient samples
                ds      6*NDELAY; x,y delay line
XF:             ds      3       ; filterd 
YF:             ds      3
Xcap:           ds      3       ; captured
Ycap:           ds      3
; end of pairs
 
c2200:          ds      1
c60:            ds      1
csec:           ds      1
flag60:         ds      1
fflag:          ds      1
debug:          ds      1
pw2:            ds      1
gndcos:         ds      2
gndsin:         ds      2
fthreshuf:      ds      1
fthresh:        ds      3
fthreshtc:      ds      1
coilon:         ds      1
coiloff:        ds      1
drvangle:       ds      1

Part 27

For completeness here is count2200 which is the last of the high speed code. 

This routine counts to see if it is time for the slow speed code. If it is, it copies the contents of the accumulators to a safe location and clears the accumulators. After that it is safe to re-enable the timer 2 interrupt. We are still inside the timer 2 interrupt routine, but we will not be using the high speed variables so it is safe to allow this part of the code to be interrupted. In fact it is necessary because the slow speed routines are going to take a lot longer than one quarter cycle to complete. 

count2200:
        ; Update counters
        ; Count 2200ths of a sec
        ; and call the slow loop routines if it is time
        ; Registers r16 r17 r18 Z are free
 
        lds     r16,c2200
        inc     r16             ; 2200dths
        sts     c2200,r16
        cpi     r16,74          ; 74 = 30 Hz
        breq    cntslow         ;
        ret
 
        ; We are now in the slow loop, 30 Hz
cntslow:                        
        clr     r16
        sts     c2200,r16       ; clear counter
  
        lds     r16,Iaccum      ; copy accumulated data I
        lds     r17,Iaccum+1
        lds     r18,Iaccum+2
        sts     Ihold,r16
        sts     Ihold+1,r17
        sts     Ihold+2,r18
        lds     r16,Qaccum      ; copy accumulated data Q
        lds     r17,Qaccum+1
        lds     r18,Qaccum+2
        sts     Qhold,r16
        sts     Qhold+1,r17
        sts     Qhold+2,r18
 
        clr     r16
        sts     Iaccum,r16      ; clear accumulators
        sts     Iaccum+1,r16
        sts     Iaccum+2,r16
        sts     Qaccum,r16
        sts     Qaccum+1,r16
        sts     Qaccum+2,r16
                                ; It is now safe to allow the T2
        sei                     ; interrupt to occur again
        rcall   Islow           ; go do the slow routines
        ret

Part 28

[image: image11.png]
I am going to start working on discrimination. The simplified block diagram above shows the steps leading up to discrimination. The received signal is demodulated giving a pair of signals I,Q. These are rotated to give calibrated signals X,Y. These are filtered to separate the rapidly changing target signal from the slowly changing ground signal giving XF,YF. Each signal sample can be given an ID that is some function of XF,YF. I will use arctan(XF/YF). Discrimination will be based on the phase angle that is given by arctan(XF/YF). 

The coil is over the target only a fraction of the time. The rest of the time XF,YF is just noise and so is the phase angle. So the discriminator should only look at the phase angle when there is a target signal present. The logical way to look for the presence of a target signal would be to watch the ground balanced signal. At this stage of testing I am using a constant ground signal rather than a variable ground signal, so I am not bothering to completely ground balance. The Y signal is close enough to a ground balanced signal for testing purposes. So the inputs to the discriminator will be YF and the phase angle. 

When the discriminator sees that the signal is strong enough it will look at the phase angle. If the phase angle is in the accepted range it will begin a beep. If the phase angle is not in the accepted range any beep in progress will be terminated. 

This table contains 1/3 of a second of data from the detector as a penny swings over the coil. The first two columns are the XF and YF values. The third column is the phase angle, but I have only bothered to calculate the phase angle for the samples near the peak of the signal. 

XF  YF  angle
-13 -15
 -6 -13
  8   4   63
 27  21   52
 34  29   50
 34  27   52
 20  24   40
  9  18   27
  2  -3
  5  -5
The discriminator is going to be watching the YF column of this table. We don't want the discriminator to be doing anything when the signal is low, so we will use a fixed threshold of say +10. The discriminator will ignore any sample with YF less than 10. The first signal it sees over 10 is the 21. Then it looks at the phase angle. 

Say we have set the discriminator to accept anything over 45 degrees. So this is an accepted signal and the discriminator starts a beep. At this time we would also set a moving threshold to the current signal strength of 21. So it will now ignore any signals weaker than 21. The next signal is 29 so it looks at the phase angle. This is also an accepted signal so it lets the beep continue, and it sets the moving threshold to 29. All the rest of the entries in the table have YF less than 29 so they would all be ignored. If there are no rejected signals the beep will terminate after some fixed amount of time. The moving threshold will also have to be reset, either by clearing it when the beep ends, or by letting it decay over time. 

Part 29

This is another sample of data from the detector. This is from a flattened iron target. 

XF  YF  angle
-27 -28
-22 -13
-13  17  -37
  3  45    4
  1  65    1
 -8  72   -6
-23  60  -21
-40  39  -46
 11  -3
 13  -5

In this case assume there is a fixed threshold of +10 and the discriminator is set to accept any positive phase angle. The first 2 samples are below the fixed threshold so they are ignored. The next sample is above the threshold but the angle is negative, so the beep remains off and the moving threshold is set to 17. The next sample is above the threshold and the angle is positive so the beep is turned on and the threshold set to 45. The next sample leaves the beep on and sets the threshold to 65. 

The next sample has a negative angle so the beep is turned off and the threshold is set to 72. All the remaining samples are less than 72 so they are ignored. 

The result is a short beep, 2/30ths of a second which sounds cut off compared to the long beep from a conductive target. 

If the discrimination angle were set at 10 degrees then all the angles from this sweep would have been rejected and there would have been no beep. 

Part 30

[image: image12.png]
I have previously listed some tables of X,Y data from the detector and phase angles for some of the data samples. But I avoided showing the phase angle of the samples that had a negative Y value. That is because it is a little difficult to explain them. 

The graph on the left above shows a single data sample. It can be described by its X,Y components, or it can be described as a line with an angle and a length. The length of the line represents the strength of the signal, and the angle of the line is the phase angle of the signal. I am measuring the angle from the +Y axis. 
In the graph on the right I have plotted 1/2 second of data from a single sweep of a penny across the coil at a distance of 5 inches. To avoid clutter I have not drawn the lines that would show the phase angles, but you can imagine lines drawn from the origin to each of the dots. One thing to notice is that the phase angles of the samples are not all the same. One reason is that the target has different phase angles when viewed from different directions. Another reason is that the X and Y signals are noisy. At greater distances from the coil the signals are weaker and the signal to noise ratio is lower. So the data samples tend to spread out more for weaker signals. A TID detector would usually pick out the strongest one of these samples and use that to ID the target. 

When static measurements are made of the phase angles of various targets, from ferrite to highly conductive metal, the phase angles are spread over a range of 180 degrees. These can all be drawn in the top half of the graph. The values of Y are always positive. But if you pass the signal from a moving target through any filter that blocks DC the output of the filter will go both positive and negative. The X and Y signals are passed through filters to separate the slowly changing ground signal from the rapidly changing target signal. This causes the filtered X and Y signal to go positive and negative. So the phase angles of filtered signals are spread over 360 degrees. If you had an ideal target that gave only one phase angle the filtered signal from that target would sometimes have that phase and would sometimes be 180 degrees away. If you look at the graph on the right you can see that the -Y signals are about 180 degrees away from the +Y signals. 

For now I am ignoring any signal with a negative Y. Another strategy for dealing with -Y signals is to reflect them through the origin. That is, if Y is negative invert both X and Y. This is a common practice, but it causes problems with noisy (weak) signals. Suppose you have a highly conductive target with a phase angle near +90 (deep silver). The Y value will be small and noise can make it go negative (the angle is greater than +90). If you then reflect that signal through the origin it comes out a little less than -90 which is in the iron or ground signal range. So deep silver can sound like iron. The same thing can happen with ground signals that are near -90. 

Noise pushes Y negative so the detector inverts the signals giving a phase angle just under +90 which looks like a good conductor. 

Part 31
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I want to use the same graph from last time to explain the common knowledge that you lose depth when you use more discrimination. These points are all from a single sweep over one target. 

This time I have shaded part of the graph to show phase angles that might be discriminated out. Signals that fall in the white part of the graph will be accepted and will begin a beep. Signals that fall in the shaded part of the graph will be discriminated out and will terminate any beep in progress. Using less discrimination means rotating the edge of the shaded area to the left so that more phase angles are accepted. Using more discrimination means rotating the edge of the shaded area towards the right so that more phase angles are rejected. 

Using more discrimination does not reduce the strength of the X and Y signals it just changes the decision of which signals will be accepted and which will be ignored. 

This changes the probability that the signals from a particular target will be accepted. 

If all the signals from a target had the same phase angle then you would be able to set the discrimination just barely to the left of the target phase angle, and that target would always be accepted while targets with lower phase angles would always be rejected. But real targets don't act like that. The signal from one target spreads out over a range of phase angles as shown above. And for deeper targets it spreads even more. And if I take multiple swings over the target I will not get the same results each time. If I am not overlapping swings very much and only get a single swing over the target, I might get lower than average phase angles on that swing and not hear the target at all, or it might just sound like trash. 

As you increase the discrimination you decrease the probability that all the signals from one target will fall in the accepted range. As some of the signals from the target fall into the rejected area the sound from the detector will start to break up because each rejected signal can interrupt the beep. 

Part 32

In Part 30 I forgot to mention that you can get negative signals from the coil when the target is in certain regions of the coil's field. 

With a concentric coil the signal is positive when the target is centered under the coil. But if the target is close enough to the coil the signal may go negative at one or more points as the target is moved from the center to the edge of the coil. If the target is far enough away from the coil the signal will always be positive. 

Differentiating coils will give a negative signal half the time. These coils have a figure 8 winding and have a signal null along the centerline of the coil. On one side of the null the signal will be positive, and on the other side of the null it will be negative. In some coils the null runs from front to back. In this case as you sweep left and right all targets cross the null and produce both + and - signals. In the Bigfoot coil the null runs side to side so targets under the front half of the coil give a + signal, and targets under the back half give a -. 

I don't have any DD coils but I would expect them to have negative signal areas to the right and left of the center positive area. 

Part 33
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I have always wondered if the XLT VDI numbers were a linear function of phase angle. I had performed some simple tests from outside the box that convinced me that the XLT VDI's were almost linear. So I was willing to treat them as linear in other tests, but I was never sure. It is hard to tell without getting into the box. 

So I used my detector project to measure the phase angle of 10 targets which had phase angles from 0 to 81 degrees and plotted the XLT DC Phase numbers versus phase angle. It turns out to be pretty close to linear. The red curve is the measured VDI's and the blue line is just a straight reference line (y=95/90 x). 

The XLT uses RC phase shift networks in the demodulator so two XLT's can easily disagree with each other by 2 or 3 VDI numbers. I suspect from other tests that my XLT reads about 1 number higher than it should at the ends of the scale. And I could have a couple of degrees of error in my phase angle measurements. 

Part 34
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When I talk about a negative signal in metal detecting I may mean different things at different times. To explain two of the possible meanings of negative signal I will have to explain the graph above. 

This graph has X and Y axes which I define by saying that the signal from a ferrite target lies on the -X axis and low conductivity non-ferrous targets lie on the +Y axis. I use a piece of ferrite as a reference target for calibration. A powdered iron transformer core would also work, or any non-conducting ferrous object. For a Y axis reference target I use the gold or silver colored write enable tabs for 5.25" floppies. These are metalized paper which have a very low conductivity. A superconductor would fall on the +X axis, but I don't happen to have any of those lying around so I don't have any +X reference targets. The x,y components of a target signal are the projections of the target onto the X and Y axes. 

I have also drawn a ground balanced coordinate system in red. Most ground signals fall a little above the -X axis though wet salt can be way up near the +Y axis. 

You rotate the ground balanced axes when you turn the ground balance knob on your detector. You rotate the axes until the ground signal fall on the red axis I have labeled ground. You test for this by bobbing the coil up and down and listening to the ground balanced (G) signal. When the G axis is perpendicular to the ground signal the projection of the ground signal on the G axis is 0 and you cannot hear the ground. The g component of the target signal is the projection of the target on the G axis. 

Now back to the issue of negative signals. When I am using the detector in the field and talk about getting a negative signal I am talking about a signal that falls in the shaded wedge between the ground axis and the -X axis. In that area g is negative (but y is positive). This happens when the coil passes over a rock or some dirt that has a phase angle that is more negative than the ground balance was set for. Detectors are usually set up so the all metal audio nulls on negative signals. Though if the self adjusting threshold (or autotune) is fast it may adjust itself while the coil is passing over the object and you will hear sound when the coil gets back to normal ground. 

When I am talking about filtering and mention a negative signal I probably mean a -Y signal. Most of the time Y and G have the same sign. But in the wedges between the ground line and the X axis, G and Y do not have the same sign. 

Also I might refer to a target with a negative phase angle as a negative target. Those targets have a -X component. 

So in other words, when I say negative, you will never know what I mean. 

Part 35

I finally got around to trying the 950 coil. I said at the beginning that I would be using the 950 but the 5.3 seemed to be a better choice for testing indoors where there is a lot of electrical noise and a lot of metal nearby. Also I did not have a connector to plug the cable into, I just had pins stuck in the end of the cable. It would have been a hassle to switch coils. But now I have a connector, so it was possible to give the 950 a try. 

With a constant ground signal present it can ID a penny at 8 inches but not 100% of the time. Without the ground signal it can ID at 9 inches but also not 100% of the time. I don't really have enough gain for impressive air test results, and since I am more interested in performance in difficult ground I probably will not add any more gain. 

From the results I was getting with the 5.3 coil I had expected to get a little bit better than this with the 950. I expected about one more inch than I am getting. I think the larger coil is picking up more noise. 

Part 36
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I have not had time to work on my project the past year, but I have managed to do some thinking about digital filters. 

I still do not know what kind of filter response I should be aiming for. The plots above show signal frequency spectrums and two kinds of filter responses. The blue curve is the spectrum of a simple target for a concentric coil when the target is far from the coil. The horizontal axis is frequency which increases to the right. The vertical axis is amplitude. The spectrum of the target goes from DC to some maximum frequency that depends on sweep speed. As you increase sweep speed the spectrum spreads to the right. The red curve represents the spectrum of the ground signal. The ground signal generally changes more slowly than the target signal so its spectrum is farther to the left. But the ground signal is usually stronger than the target signal (for deep targets), so the curve goes higher. In some cases it is much higher than I could show on these graphs. The area under each curve is the amount of power in the signal. The green curve is a filter response curve. 
The top graph has curves for the target and ground and a response curve for a simple filter. The filter response goes to zero at DC. So this filter blocks any constant ground signal and attenuates slowly changing signals. When you send a signal through a filter the signal spectrum gets multiplied by the filter response. That is, at each horizontal point on the graph you multiply the height of the signal curve by the height of the filter curve. 

The second graph shows the signal curves after they have been multiplied by the filter curve. Notice that now the area under the target curve is larger than the area under the ground curve. But there is still a lot of ground signal there. One good thing about this type of filter is that it is not too sensitive to sweep speed. As the sweep speed changes the spectrums move right or left and the amplitudes increase or decrease but the target signal to ground signal ratio stays the same. 

The third graph shows a sharp cutoff filter. Instead of the filter response gradually decreasing to zero, there is a sharp drop off at the filter cutoff frequency. 

The fourth graph shows the signal spectrums after being multiplied by the response of the sharp cutoff filter. In this case the area under the ground curve is much smaller than the area under the target curve. But because of the sharp cutoff, the results can change suddenly when sweep speed changes. If you sweep too slowly the target spectrum moves left out from under the filter response curve and the signal goes away. If you sweep too fast the ground signal moves right and you get too much ground signal. 

I am leaning towards the sharp cutoff design. 

It would be nice to track the sweep speed and adjust the cutoff frequency to match the sweep speed. But I do not think I am going to have enough memory in my project to do that. 

Part 37

I have been working with some digital filters. 

Previously the detector has been integrating 74 A-D samples to produce each 30 Hz sample. Then the 30 Hz samples are filtered by a Finite Impulse Response (FIR) filter to remove ground signals. The FIR filter is configured as a bandpass filter. So it removes both low frequency and high frequency noise. But it was not doing a good enough job on either type of noise. 

A mathematical description of an FIR filter is: 

yn = a0xn + a1xn-1 + a2xn-2 + a1xn-3 + a2xn-4
Y is an output from the filter, the x's are inputs, and the a's are coefficients. Each output depends on several previous inputs. That means that the previous inputs have to be stored in memory. I have been saving the 12 most recent inputs for each channel. I have only been using +1, -1 and 0 for coefficients so I would not have to do any multiplication. 

To remove more of the high frequency noise I would have to use fractional coefficients which means having to do a multiplication for each input value. To get a sharper low frequency cutoff to remove more ground noise I would have to save more of the previous inputs and use fractional coefficients. I could afford the multiplies but not the extra memory (RAM) to store enough inputs. 

I had previously tried a median filter and a single pole low pass filter behind the integrator to reduce high frequency noise. But neither of them was effective. So I decided to try a two pole Infinite Impulse Response (IIR) filter. 

A mathematical description of an IIR filter is: 

yn = a0xn + a1xn-1 + a2xn-2 - b1yn-1 - b2yn-2
Yn is an output from the filter, the x's are inputs, and the a's are coefficients for the inputs. The other y's are previous outputs from the filter, and the b's are coefficients for the previous outputs. Each output depends on previous inputs and previous outputs. The dependence on previous outputs means that there is feedback. This can be used to provide sharper cutoff for a given amount of memory space than an FIR filter. 

I placed a 2 pole 4.5 Hz low pass IIR filter between the integrator and the FIR filter. This cut the high frequency noise about in half without affecting the target signal. 

This improvement in signal to noise ratio extended the range by more than half an inch on the 5.3 coil. It would probably be good for about an extra inch with the 950 coil. 

Then I tried replacing the FIR filter with a 2 pole high pass IIR filter. This gives better rejection of low frequency ground signals, but I lost the extra high frequency filtering I was getting from the FIR and was not getting good results. 

So I put the FIR filter back in after the high pass filter. But now the high pass filter cuts out the low frequency noise so I could use fewer stages in the FIR filter. I dropped it from 12 to 7 stages. And since the low pass filter gets rid of most of the high frequency noise I can still use just 1's and 0's for FIR coefficients. I was also able to use the FIR filter to reshape the signal coming from the high pass filter. 

Part 38
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The graphs above are simulations of the signals I am getting at various points in the detector. 

The top graph shows 1000 samples of signal and noise. In the simulation this represents one second of data. The detector actually takes 2200 samples per second per channel. The signal is in the area between 400 and 600. 

The second graph shows the output of the integrator. In the simulation I am integrating 32 samples. In the detector I integrate 74 samples. 

The third graph shows the output of the 2 pole 4.5 Hz low pass filter. At this point the high frequency noise has pretty well been eliminated in the graph. It might look like this is a useable signal and that we are done now. But I did not add any DC component or low frequency ground signal to this simulation. In the detector there would be a large DC component from the ground signal which might be hundreds of times larger than the target signal. So the signal still has to go through another filter to remove the DC and low frequencies. 

The fourth graph is the output of the 2 pole 0.85 Hz high pass filter. This removes DC and low frequencies. It also changes the shape of the target signal (it gets differentiated). If there is to be no DC output then whenever the signal goes above 0 for a while it must also go below 0 for a while to balance the DC component. I suspect that this change in signal shape is responsible for some of the incorrect ID's that detectors give. On bottlecaps for example. 

The fifth graph is the output of the FIR filter. There was no visible high frequency noise left in the simulation coming into this filter, but there is plenty of noise left in the detector when the target is far enough away. The FIR filter has reshaped the target signal by moving half the dip that followed the peak of the target signal to in front of the signal. There is still the same amount of signal below zero, but now it is evenly split before and after the peak. But it has also delayed the signal. The total delay through all the filters is about .1 second. 

Part 39

More digital filter work. I have removed the FIR (Finite Impulse Response) filter again, and replaced it with more IIR (Infinite Impulse Response) Filters. 

Before I started working with IIR filters I had a 12 stage delay line for an FIR filter. I am now using that memory for 10 poles of IIR filters. It is organized as 5 two pole filters in series. Any of the two pole filters can be low pass, high pass, or band pass filters. I now have it set up as a 6 pole low pass filter and a 4 pole high pass. 

This combination is working at least as well as the previous setup (2 pole low, 2 pole high, plus FIR) at reducing high frequency noise, and it should be even better at removing ground signals. 

Having 5 two pole filters makes it very flexible. Some characteristics of the detector like best sweep speed and amount of ground rejection can be changed just by replacing filter coefficients. Unfortunately the coefficients are a pain to calculate. Right now I am rebuilding the program every time I want to change the numbers. 

Eventually I will have a table of filter coefficients for different conditions. 

Part 40
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This is actually part of a digital PI project I am working on. But I do not have a PI board set up yet so I am doing this testing on the VLF board. I was testing to see the effects of taking more than one A/D sample at each time of interest. 

The graph on the left above shows single samples. The red curve represents the ground component of the received signal. The blue curve represents the target component of the received signal. These two components are not available as separate signals. The signal from the amplifier is the sum of these two components. By taking an A/D sample at time A, near the time when the ground component is crossing through zero I get a sample that consists mostly of target signal. I take another sample at time B. B gets subtracted from A to give one differential sample. 

The graph on the right shows two samples taken about 10 microseconds apart at time A which are added together. If the timing is right, one of the A samples will have a negative ground component and the other sample will have a positive ground component. When added together most of the ground signal will cancel out. But both A samples have a positive target component, so they give a larger target signal when added together. Similarly the two B sample give mostly target signal. The sum of the B samples is subtracted from the sum of the A samples to give one differential sample. 

I have not tried to measure an increase in detection range, but the signal on the scope looks noticeably better when pairs of samples are added together compared to taking single samples. 

Robert Hoolko.
